
here is more complex and results in equations that are not simple and do 
not predict a simple relationship between drug release and time, particle 
size, or drug concentration. This model should be considered if its as- 
sumptions appear to be met and if experimental data are not described 
by the classical model. 

The model presented here probably will provide some insight into the 
formulation of suspensions for application to the skin or mucous mem- 
branes. The equations presented are only valid for systems that satisfy 
the requirements of the model. Parameters other than dissolution rate 
that can affect drug release and parameter interrelationships will be in- 
vestigated and discussed in a subsequent publication based on the model 
presented here. 
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Diffusion Model for Drug Release from Suspensions 11: 
Release to  a Perfect Sink 

F. TOM LINDSTROM *= and JAMES W. AYRES * 

Abstract Numerical mathematical methods are applied to a diffusion 
model based on physicochemical principles to predict drug release from 
suspensions of drug in semisolid vehicles. The predicted mass of drug 
released versus time curves using this model are in agreement with some 
reported experimental data but differ from predictions using the classical 
model for semisolid suspensions. The differences are discussed in relation 
to the drug dissolution rate and diffusion rate in the vehicle. 

Keyphrases Diffusion-suspended drug in semisolid vehicle, math- 
ematical model based on physicochemical principles 0 Dissolution- 
suspended drug in semisolid vehicle, mathematical model based on 
physicochemical principles Pharmacokinetic models-diffusion and 
dissolution of suspended drug in semisolid vehicle 0 Drug release-from 
suspensions, diffusion model based on physicochemical principles 
Suspensions-drug release, diffusion model based on physicochemical 
principles 

Previously (l), the complete theoretical development 
of a general nonlinear mass transport model was presented. 
Thus, this paper simply gives the nonlinear mass transport 
equations that incorporate local drug dissolution me- 
chanics as already reported. The case under consideration 

is the mass transfer of drug out of an ointment vehicle 
containing dissolved and suspended drug when the semi- 
solid is in immediate contact with a perfect sink (Fig. 1). 
A typical “real world” case where these conditions can exist 

. -L1 i-l --. 
AX 

c , * o  
4 

- 
/ A -  cross sectional 

exposure area 
d 

Blood 
Capillary 
System 

i 
“Perfect Sink’ 

b DrugMars 
flux 

Figure I-Schematic of the model system for drug release directly to 
a perfect sink. 
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Table I-Relative Cumulative Mass Release Values for the Distribution p(t) as a Function of Time t in Minutes ( E ,  = 0.025)~ 

K, min-’ 
~ ~ ~~ 

Minutes 0.0 0.01 0.1 1.0 10 100 1000 10,000 
~ 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
30 0.78 0.79 0.85 1.29 3.02 5.57 6.59 6.73 
60 0.96 0.99 1.17 2.33 5.93 11.04 13.16 13.46 

120 1.05 1.11 1.63 4.39 11.64 21.63 26.17 26.91 
180 1.05 1.17 2.07 6.44 17.20 31.52 38.46 38.94 
240 1.05 1.22 2.50 8.49 22.61 40.25 43.29 43.44 
300 1.05 1.27 2.93 10.52 27.86 46.76 47.74 47.94 
360 1.05 1.32 3.36 12.55 32.95 51.02 52.18 52.43 
4 20 1.05 1.37 3.79 14.56 37.87 55.06 56.61 56.92 
480 1.05 1.42 4.22 16.57 42.62 59.03 60.99 61.41 
960 1.05 1.82 7.64 32.29 74.34 84.32 85.75 86.09 

1440 1.05 2.23 11.04 47.42 96.14 103.63 104.48 104.74 

OD = 6 X 10- cm’/min, L = 2 X cm, C, = 100 pg/cm3, ps = 1.0 g/cm3, and A t  = 0.5 min. 

would be the application of ointment directly to an exposed 
capillary bed when the skin has been abraded. 

This model also simulates certain laboratory experi- 
ments where a drug suspended in a semisolid is in direct 
contact with a large, well-stirred, uniform temperature 
receptor phase for a period of time. Drug release from 
suspension experiments have been carried out in this 
manner (2-4). This case was solved previously (1) using 
classical nonnumerical mathematical methods. This paper 
explores the predicted drug release from such systems 
obtained by numerical analysis of the system simulated 
in Fig. 1. 

MASS TRANSPORT MODEL 

The heart of the mass transport model for drug movement in the so- 
lution phase in an ointment base (1) is: 

where: 

C1 = solution phase drug concentration distribution (grams per 

D1 = solution phase drug diffusion coefficient (square centimeters 

C, = solution phase drug saturation concentration (grams per cubic 

ps = suspended phase drug density (powder density) (grams per 

to = initial volume fraction of ointment that is suspended drug 

cubic centimeter) 

per minute) 

centimeter) 

cubic centimeter) 

(cubic centimeter per cubic centimeter) and equals: 

MDT = total drug mass in ointment sample (free and suspended) 
(grams) 

A = exposure surface area of ointment (square centimeters) (Fig. 
1) 

151 = ointment slab thickness 
K = K K ~ ~ ,  where K is the overall dissolution rate constant (min-l), 

the product of the crystal surface area to volume constant and 
the energy-dependent reverse dissolution rate or crystallization 
rate constant Kcw A more complete explanation of these terms 
is found in Ref. 1. 

The subscripts (suppressed for the remainder of this paper) simply 
denote that a particular parameter or dependent variable belongs to the 
ointment portion of the model (Fig. 1). 

The concentration distributions C ( x ,  t ) can be obtained by solving the 
numerical analog of Eq. 1 subject to a no flux-perfect sink set of boundary 
conditions. The simulated system (Fig. 1) can be described mathemati- 
cally as: 
-- d C -  azc 
at Ds 

+ K(C, - C )  (c&3 - EL‘ [Cs - C(x, 7)] dr)’ (Eq. 2) 
3 Ps 

The initial conditions are: 

The boundary conditions are: 

= 0 no flux boundary, t > 0 (Eq. 4) 32 x = - L  

C(0, t )  = 0 perfect sink, t > 0 (Eq. 5) 

Since the system of mass transport (Eqs. 2-5) is nonlinear and the 
parameter values (especially R) may be large, the more classical math- 

Table 11-Relative Cumulative Mass Release Values for the Distribution p ( t )  as a Function of Time t in Minutes (€, = 0 . 0 5 ) a  

K ,  min-’ 

Minutes 0.0 0.01 0.1 1.0 10 100 1000 10,000 

0 
30 
60 

120 
180 
240 
300 
360 
420 
480 
960 

1440 

~ 

0.00 
0.78 
0.96 
1.05 
1.05 
1.05 
1.05 
1.05 
1.05 
1.05 
1.05 
1.05 

0.00 
0.79 
1.00 
1.15 
1.23 
1.31 
1.39 
1.47 
1.55 
1.63 
2.26 
2.89 

0.00 
0.88 
1.27 
1.93 
2.56 - ~. 

3.19 
3.82 
4.45 
5.08 
5.71 

10.72 
15.71 

0.00 
1.51 
2.82 
5.43 
8.02 

10.62 
13.20 
15.77 
18.34 
20.89 
41.05 
60.67 

0.00 
3.56 
7.04 

13.92 
20.69 
27.34 
33.88 
40.30 
46.60 
52.77 
97.22 

132.03 

0.00 
5.94 

11.83 
23.50 
34.96 
46.15 
56.97 
67.26 
76.68 
84.56 

119.08 
146.51 

0.00 _._ - 
6.65 

13.29 
26.56 
39.78 
52.92 
65.89 
77.36 
81.83 
86.31 

121.91 
147.42 

0.00 
6.74 - 

13.48 
26.95 
40.43 
53.89 
67.33 
77.48 
81.98 
86.48 

122.44 
147.66 

QD = 6 X low8 crn’lmin, L = 2 X ID- ’  cm, C, = 100 pg/cm3, p, = 1.0 g/cm’, and At = 0.5 min. 
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Table 111-Relative Cumulative Mass Release Values for the Distribution p ( t )  as a Function of Time t in Minutes (c, = O.l )a  

Minutes 0.0 0.01 0.1 1.0 10 100 1000 10,000 

n 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 _.. . _. -. -. . . ... . ~. . . ... . ... . 

30 0.78 0.80 0.94 1 .79  4.13 6.21 6.69 6.74 
60 0.96 1.02 1.43 3.42 8.19 12.39 13.37 13.49 

120 1.05 1.21 2.33 6.68 16.23 24.72 26.74 26.97 
180 1.05 1.34 3.23 9.92 24.29 36.99 40.09 40.46 _ _  
240 i .05  1.46 4 . i 2  13.16 32.26 49.18 53.44 53.94 
300 1.05 1.58 5.01 16.39 40.09 61.29 66.76 67.42 
360 1.05 1.71 5.91 19.62 47.87 73.29 80.07 80.91 
4 20 1.05 1.83 6.80 22.83 55.58 85.18 93.36 94.38 
480 1.05 1.95 7.69 26.04 63.20 96.92 106.61 107.86 
960 1.05 2.94 14.80 51.44 120.96 171.51 172.32 172.51 

1440 1.05 3.92 21.89 76.35 172.05 206.02 208.15 208.49 

OD = 6 X cm*/min, L = 2 X cm, C, = 100 pg/cm3, p s  = 1.0 g/cm3, and A t  = 0.5 min. 

ematical methods such as perturbations (regular in this case) are not 
applicable. Thus, it is necessary to consider numerical methods for ob- 
taining the close approximation concentration distributions. The exact 
numerical method used is that of backward finite differences, where the 
global error involved at  any point in- time and space always remains 
bounded and goes as O(Ax2 + At) .  The details of sectioning the ointment 
slab up into N discrete, but adjoining, compartments (analogous to N 
discrete, but intimately connected, well-mixed chemical reactors) are 
contained in the Appendix. 

RESULTS AND DISCUSSION 

The model drug-vehicle system chosen was cortisone pawder sus- 
pended in a semisolid vehicle that is not soluble in the receptor sink. Thus, 
the following parameter data estimates are available (1): N = 10 com- 
partments, Ax = LIN, D = 6 X 10-8cm2/min, L = 2 X cm, C, = 100 
pg/cm3, ps = 1.0 g/cm3, K is variable, 0 2 K < min-', and co is variable 
(0 2 cg < 1). 

Since the relative cumulative drug mass release (grams) at any time 
t after the release process has begun is defined as (1): 

(Eq. 6) 

and Mo = ALC,, the actual formula used in calculating the relative cu- 
mulative drug mass release from the ointment is: 

where ~ ( x ,  t )  = C(x, t)/C,, and the partial derivative in Eq. 7 is replaced 
by a sufficiently high order (2 or higher) numerical approximation so that 
O(Ax2) is always retained (see Appendix for details). 

For the finite sequence €0 = 0.025,0.05,0.1,0.2, and 0.4, the relative 
cumulative drug mass release, p ( t ) ,  as a function of time (minutes) over 
the interval 0-24 hr is summarized in Tables I-V. Note that eg = 0.025 
is equivalent to a concentration of 2.5% drug in the semisolid and would 

give a maximum p ( t )  value of 250. In like manner, the other to values 
follow suit and the maximum p ( t )  for cg = 0.4 would be 4000. 

Several important effects on the cumulative relative drug mass loss 
distribution can be observed by study of the distributions in Tables I-V. 
In the true case of no dissolution of drug in the vehicle ( K  = O), there is 
no release of drug since none dissolves. This model assumes a C, of 100 
pg/cm3; therefore, this total amount is predicted to be released when K 
= 0, since no more drug can dissolve to replace the released drug. Each 
100 pg/cm3 gives a relative release of 1.0; if the numerical approximation 
is exact, p ( t )  = 1.00 for the case K = 0 as t - large. 

However, since the numerical simulation is actually formed from a 
truncated Taylor series, it is not exact but does remain close to the exact 
value as time - large (i.e., the error remains bounded in time). For low 
overall dissolution rate constants, 0 5 K 2 0.1 inin-' (the choice of 0.1 
is, of course, dependent on D and L ) ,  the cumulative drug mass loss is 
quite slow and becomes linear with time after about 120 min (Tables I-IV, 
bottom three curves in Fig. 2). The exact value of time where this more 
or less zero-order type of drug release commences can be seen from the 
tables to be close to 120 min regardless of the initial total drug mass (g). 
This type of phenomenon is expected for such low values of K ,  because 
the rate-limiting step in this region of K values is clearly dissolution. The 
drug simply cannot go into solution fast enough to replace what has been 
transported toward the boundary ( x  = 0) by diffusion when D = 6 X 
cm2/min. 

In the highest case of fg = 0.4 (40% of the ointment slab consists of 
suspended drug initially), it can be calculated that as t - -, p ( t )  - 4000 
for the example presented here. At  the end of 24 hr, less than 1.0% of the 
total drug has been released due to the slow dissolution. 

For values of K in the range 0.1 5 K s 100.0 min-', a substantial in- 
crease in the cumulative relative drug mass release distribution is seen 
compared to K 5 0.1 min-I. This region (again dependent upon D and 
L )  contains those values of K where the dissolution and diffusion pro- 
cesses are somewhat comparable and neither one is clearly the rate- 
limiting step. In this region of K values (over the first 24 hr anyway), the 
distributions are somewhat linear (Fig. 2) in time after a similar initial 
curvilinear buildup, as was observed for K in 0 5 K 2 0.1 min-l. The 
maximum cumulative drug release at 24 hr (cg  = 0.4) is about 6%. 

Table IV-Relative Cumulative Mass Release Values for the Distribution p ( t )  as a Function of Time t in Minutes (c, = 0 . 2 ) ~  

K ,  min-' 

Minutes 0.0 0.01 0.1 1.0 10 100 1000 10,000 
~ 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
30 0.78 0.81 1.02 2.14 4.68 6.39 6.71 6 .75  
60 0.96 1.05 1.65 4.15 9.32 12.77 13.42 13.49 

120 1.05 1.30 2.88 8.18 18.57 25.53 26.84 26.98 
180 1.05 1.49 4.10 12.19 27.78 38.26 40.25 40.46 
240 1.05 1.68 5.32 16.20 36.95 50.97 53.67 53.97 
300 1.05 1.87 6.54 20.20 46.08 63.66 67.08 67.46 ._ ._ 

360 1.05 2.06 7.76 24 . i9  55% 76.31 80.48 80.95 
420 1.05 2.26 8.99 28.18 64.19 88.94 93.88 94.44 
480 1.05 2.45 10.21 32.16 73.18 101.54 107.28 107.93 
960 1.05 3.97 19.95 63.77 143.27 200.81 214.22 215.82 

1440 1.05 5.50 29.68 94.94 209.69 293.54 308.42 308.55 
~ ~ ~~ ~ ~~ 

a g  = 6 X cm'lmin, L = 2 X cm, C, = 100 pg/cm3, p ,  = 1.0 g/cm3, and At  = 0.5 min. 
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Table V-Relative Cumulative Mass Release Values for the Distribution p ( t )  as a Function of Time t in Minutes (e, = 0 . 4 ) ~  

K,  min-’ 

Minutes 0.0 0.01 0.1 1.0 10 100 1000 10,000 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
30 0.78 0.82 1.13 2.56 5.19 6.52 6.73 6.75 
60 0.96 1.10 1.95 5.02 10.35 13.03 13.45 13.50 

120 1.05 1.43 3.57 9.94 20.66 26.05 26.90 27.00 
180 1.05 1.73 5.19 14.85 30.95 39.07 40.35 40.48 
240 1.05 2.02 6.80 19.76 41.21 52.08 53.80 53.98 
300 1.05 2.31 8.42 24.66 51.46 65.08 67.24 67.47 
360 1.05 2.60 10.04 29.55 61.68 78.07 80.69 80.97 
420  1.05 2.89 11.65 34.44 71.87 91.05 94.13 94.46 
480  1.05 3.18 13.27 39.32 82.05 104.03 107.58 107.96 
960  1.05 5.51 26.18 78.19 162.56 207.51 215.09 215.91 

1440 1.05 7.84 39.07 116.68 241.33 310.21 322.50 323.85 

OD = 6 X 10-8cm2/min, L = 2 X cm, C, = 100 pg/cm3, p ,  = 1.0 g/cm3, and At = 0.5 min. 

In the region 100 K < m min-’ ( m  = 10,ooO for Tables I-V), diffusion 
is the rate-limiting step. When diffusion is the rate-limiting process, the 
model predicts the following very interesting “moving source” phe- 
nomenon, which is in good agreement with literature data for release of 
medroxyprogesterone acetate from a cylindrical silicone polymer ( 5 ) .  
Notice that under the columns labeled K = 10,000 min-’, the relative 
cumulative drug mass distribution initially has a zero-order (Fig. 3) type 
of buildup (0 < t < 60 min). Then (especially a t  low values), the release 
becomes non-zero order as the suspended drug in the surface layer [first 
compartment adjacent to the boundary (x = 0) in the numerical scheme] 
becomes exhausted and a type of diffusion layer or ointment boundary 
is created by the portion of the semisolid vehicle that  is now drug free. 

Initially, under high K values, a large burst of drug is obtained from 
the surface layer of ointment only. The other deeper regions in the 
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Figure %-Relationship between relative cumulative mass loss p(t) 
versus time t i n  minutes for three different 60 values and three K values 
for each 60 value. The combinations are characterized via the order pair 
designation (60 = -; K = -). 

ointment slab have essentially not yet begun to feel any concentration 
gradient in the local regions and are thus, for all practical purposes, just 
sitting still in time. However, as time goes on and the surface layer (first 
compartment) is exhausted of its suspended drug, the second layer 
(second compartment) begins to contribute drug by diffusion of dissolved 
drug and by sending suspended drug into solution. But this newly dis- 
solved drug must diffuse through a thin permeable slab of ointment, the 
empty first compartment which is now devoid of any suspended drug, 
to the boundary x = 0. 

As time goes on, the second layer is also depleted of i ts  suspended drug 
and the third compartment begins to contribute. Now drug coming from 
the third compartment must diffuse through the first two compartments. 
This sequence is repeated in time until the entire ointment slab is devoid 
of all suspended and free drug under the hypothesis of this model. The 
net effect of these large values of K is to produce a moving source of 
suspended drug, very much like an earlier model (6) in which diffusion 
is the rate-limiting step. 

From Table VI, it can be seen that after 24 hr the first four compart- 
ments are nearly exhausted of their initially suspended drug mass ( K  
large) in the case of €0 being a 2.5% suspension, whereas only the first 
compartment is extensively depleted when cg = 40%. This moving source 
phenomenon is the reason for the extreme curvilinearity in the case of 
eg small and almost complete linearity for 24 hr for eg large (Fig. 3). 

Although the current model is in agreement with an earlier model (6) 
with respect to a moving source when dissolution is very rapid, the models 
predict different cumulative drug mass release uersus time curves. The 
classical model (6) results in Eq. 8 to relate the amount and rate of release 
of drug suspended in an ointment vehicle to time and variables of the 
system (when C, << A ) :  

Q = S m  (Eq. 8 )  

where Q = amount of drug released at time t ,  S = surface area of expo- 
sure, A = concentration of drug (units per cubic centimeter), C, = solu- 
bility of drug (units per cubic centimeter) in the vehicle, D = diffusion 
constant of the drug in the vehicle, and t = time. 

Equation 8 predicts that  the amount of drug released would be pro- 
portional to the square root of the total drug present. The model pre- 
sented here predicts a limiting or upper bounding distribution (for large 
K values) as cg increases (Fig. 3). Obviously, cg cannot be increased beyond 
1.0. However, it appears from the tables that cg = 40% is probably close 
to the upper bounding distribution. This upper limit distribution is im- 
portant and was observed experimentally (7). 

Other experimental data indicate that  the release of drug from a sus- 

Table VI-Relative Cumulative Mass Loss Data and Relative 
Initial Mass Data ( K  = 10,000 min-I) 

Initial Relative 
Mass in  

Boundary 1440-min 
Compartment  p Reading € 0  

0.025 
0.05 
0.1 
0 .2  
0.4 

25 
50 

100 
200 
400 

105 
148 
208 
308 
324 
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Table VII-Comparison of Relative Amounts of Predicted Drug Release Using Two Different Diffusion Models Assuming Rapid 
Dissolutiona 

E , ,  = 0.025 E,, = 0.10 E,, = 0.20 E,, = 0.40 

Minutes P P H  M P H  I.r PH Ir MH 

320 
cn 
UI 
1 
UJ 280 
U 
$ 260 
2 240- 
u 
3 220 

a 300 

120 26.9 29.98 26.9 59.96 26.9 84.57 26.9 119.22 
960 86 84.85 173 169.71 216 239.28 216 338.43 

1440 105 103.94 209 207.89 309 337.43 324 413.37 

- 
- 
- 
. 

- 

aRelative amounts obtained for p and p~ using Eq. 7 and converting Eq. 8 to a form (1) that also predicts relative cumulative drug mass release at  
time t, namely, P H  = m / L  J z  or p~ = QILC,. 

pension in a semisolid is not always proportional to the square root of drug 
concentration and the ratio changes with time. Examples are sulface- 
tamide in hydrogenated cottonseed oil with surfactant and sulfathiazole 
in hydrogenated cottonseed oil (8). Salicylic acid suspended in several 
different vehicles was not released as predicted by Eq. 8, possibly due to 
an inadequate dissolution rate of the suspended particles (9). Release 
of suspended benzocaine from white petrolatum was not proportional 
to the square root of concentration for each sample obtained over the time 
period investigated (10). 

Introduction of a membrane between the vehicle and the receptor 
phase, when the membrane is not rate limiting for release (as occurred 
in some experiments), would not change the relationship predicted by 
the model for Eq. 8 between concentration and amount released, although 
a lag time may be evident. A matrix-boundary diffusion layer model (5, 
11,12) was proposed to explain some cases where the release is not pro- 
portional to the square root of concentration. Such models incorporate 
the realistic assumpfion of a desorptive phenomenon occurring at  the 
semisolid-receptor phase interface. This assumption is compatible with 
the model presented here and will be considered in a future publica- 
tion. 

The differences in predicted relative cumulative drug mass release 
using Eqs. 7 and 8 are shown in Table VII and Fig. 4. In the range of rapid 
dissolution for increasing drug concentrations, the model presented 
predicts little effect on the amount of drug released at short times and 
a limiting upper bound for drug release a t  longer times. In contrast, the 
classical model predicts a large effect a t  short times for increasing drug 

360 

340 

2 320 z 
u i  300 cn 
W 280 

260 

3 240 

a 
1 

a = 220 
2 200 u 

0 
w 180 
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a 
I- 160 

140 
I 
=I 120 
0 
Lu 100 I 2 80 
1 
UI 60 
U 

40 

20 

I20240 480 960 1440 
MINUTES 

Figure 3-Relationship of p(t) versus t for K = 20,000 min-' and eo 
varying from co = 0.025 to 0.4. Other parameters used ingenerating the 
curves are listed in the text. 

concentrations. The predicted effect at short times is highly dependent 
on the parameter constants being used and will vary for each drug-vehicle 
system. An upper bound, however, is predicted for all systems by the 
current model and not by the classical model. 

The apparent linearity of p versus V'? in Fig. 4 is due to computer time 
limitations. If this numerical simulation were plotted for 10 or 20 days 
consecutively, a pronounced negative curvature, especially a t  smaller to 
values, would clearly be seen at  longer times. This negative curvature has 
no place in the theory of heat and mass transfer when simple 4 behavior 
is assumed. However, the negative curvature is a well-known phenomenon 
in heat and mass transfer theory when the complete Fourier series rep- 
resentation is given to the drug concentration distribution C(x, t ) across 
the ointment slab, -L 5 x < 0. 

The previous discussion was obtained from a rather good (as evidenced 
by the column labeled K = 0) numerical simulation of the transport model 
under the hypothesis that D = 6 X cm2/min and L = 20 fim. When 
these parameter values are changed for systems other than the one pre- 
sented here, a new set of drug mass release distribution tables over the 
same range of K values can be easily obtained'. 

Since this scheme is numerical, it is instructive to consider the effects 
of changes in the mesh size, Ax, and time step size, At ,  on the distribu- 
tions, p( t ) .  Since it is difficult to generate a large set of tables for the 
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1 This will be discussed in Part I11 of this series. 
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Table VIII-Relative Cumulative Mass Release Values for the Distribution ~ ( t )  as a Function of Time t in Minutes ( E , ,  = 0.1 and 
A t  = 0.25 min)a 

K, min-’ 

Minutes 0.0 0.01 0.1 1.0 1 0  100 1000 10,000 

0 0.00 0.00 
30 0.76 0.77 
60 0.94 0.99 

0.00 0.00 0.00 
0.91 1.77 4.12 
1.41 3.40 8.18 

0.00 0.00 
6.20 6.69 

_ _  12.39 13.37 
120 1.02 1.18 2.31 6.66 16.27 24.72 26.74 
180  1.03 1.31 3.20 9.90 24.28 36.99 40.09 
24 0 1.03 1.43 4.10 13.14 32.21 49.18 53.43 
300 1.03 1.56 4.99 16.37 40.07 61.28 66.76 
360 1.03 1.68 
420 1.03 1.80 
480 1.03 1.93 
960 1.03 2.91 

1440 1.03 3.90 

5.88 19.60 47.86 
6.77 22.81 55.56 
7.66 26.02 63-18 ~- .- . 

14.78 51.42 120.94 
21.87 76.32 172.03 

73.29 80.07 
85.17 93.36 ~ .~ _ _  
96.91 106.60 

171.41 172.15 
205.91 207.97 

~~ 

0.00 
6.74 

13.49 
26.97 
40.46 
53.94 
67.42 
80.91 
94.38 

107.86 
172.28 
208.26 

OD= 6 X lo-* cm2/min,  L = 2 X lo-’ cm, C, = 100 pglcm’, and P S  = 1.0 glcm’. 

Table IX-Relative Cumulative Mass Release Values for the  Distribution ~ ( t )  as a Function of Time t in Minutes (c, = 0.1 and 
at = 1.0 m i n p  

K, min-’ 

Minutes 0.0 0.01 0.1 1.0 1 0  100 1000 10,000 
~ ~~ ~~~ 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
30 0.83 0.85 0.99 1.83 4.15 6.21 6.69 6.74 
60 1.02 1.07 1.48 3.46 8.22 12.40 13.37 1 3  49 - -~ 

120 1.10 1.26 2.39 6.72 16.30 24.73 26.74 26.97 
180  1.11 1.39 3.28 9.97 24.31 37.00 40.09 40.46 
240 1.11 1.52 4.17 13.21 32.25 49.19 53.44 53.94 
300 1.11 1.64 5.07 16.44 40.11 61.30 66.76 67.43 
360 1.11 1.76 5.96 19.66 47.90 73.3- 80.07 80.91 
420 1.11 1.89 6.85 22.88 55.61 85.19 93.36 94.38 
480 1.11 2.01 7.74 26.09 63.23 96.94 106.61 107.86 
960 1.11 2.99 14.86 51.48 121.00 171.71 172.67 172.93 

1440 1.11 3.98 21.95 76.39 172.11 206.22 208.49 208.91 

aD = 6 x lo-’ crn’lmin, L = 2 X lo-’ cm,  C, = 100 pg/cm3, and  p s  = 1.0 g/cm3. 

various to versus K combinations for selected values of Ax and At while 
still retaining the total ointment thickness, L,  and run time t = 1440 min, 
the cases of At = 1 min and At = 0.25 min for to = 0.1 and N = 10 were 
chosen for evaluation. In accordance with theory (13), when N increases 
and Ax and At decrease, the order of the error goes down rapidly. Hence, 
the approximation becomes better and better. 

Although this paper does not attempt to give an exact error analysis 
for the model presented, Tables 111, VIII, and IX illustrate the accuracy 
and error stability of the numerical simulator used to approximate the 
solution to the complete nonlinear mass transport system. Tables VIII, 
111, and IX reflect the values At = 0.25,0.5, and 1.0 min, respectively. All 
have the common parameter values used earlier. Examination of the 
tables shows that not only does the error remain bounded in all cases, as 
theory says it should (13), but also that the percentage difference between 
values for corresponding K values decreases with increasing time when 
Tables I11 and VIII are compared and when Tables VIII and IX are 
compared. The worst error occurs a t  early times and small K values (0 
2 K 2 0.1). This finding is justified, however, by the error analysis (13) 
for parabolic-type partial differentio-integral equations of the type 
adapted for the transport model. 

The value of At throughout this paper is 0.5 min. This value is the 
geometric mean of the two values 1.0 and 0.25, although the main reason 
for choosing 0.5 min is simply that it gives reasonably accurate p values 
coupled with ease of computation. 

SUMMARY 

A numerical method was used to solve the equations associated with 
a new model for the release of suspended drug from a semisolid vehicle 
to an infinite sink. Evaluation of the method through the consideration 
of increasing t values shows the mathematics to be stable and bounded 
in the scheme presented. The model predicts a curvilinear relationship 
between the amount of drug released and the amount of drug present and 
the time elapsed other than time112. 

The release pattern may or may not appear linear with time or time112 

if release is evaluated over short time intervals. Use of such linear rela- 
tionships to project drug release at  earlier or later times than those ac- 
tually evaluated may introduce considerable error with respect to the 
actual amount released. 

APPENDIX 

Consider the following nonlinear parabolic integro-differential problem 
for mass transport of drug in an ointment-perfect sink system: 

for all (x, t )  in {(-L1 < x < 0) X ( t  > O)] subject to the initial condi- 
tions: 

q ( x ,  +O) = 1.0 -L1 4 x > 0 (Eq. A2) 
and boundary conditions: 

(Eq. A3a) 

a n d  
q(0, t )  = 0 t > 0 (Eq. A36) 

and q ( x ,  t )  = C(x, t)lC,. Note that D, K, to, pa, C,, and L1 are all positive 
parameters. 

By using a reported scheme (131, the time derivative bqldt can be re- 
placed by a backward in time difference quotient: 

(Eq. A4) 

while the space derivative is approximated by a space-centered difference 
quotient: 

(Eq. A5) 
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and the integral term is evaluated backward in time by the trapezoidal 
rule. Note that Ax = L I / N  and At is chosen arbitrarily small but positive. 
The qi (n)  notation used for the remainder of the paper means simply 
this: 

= q b i ,  tn) = dih, nAt )  
i = 0,1,2,. . . ; N  n =0,1 ,2 , . .  . (Eq. A6) 

The space, time, and integral operators have been approximated in such 
a way that an implicit, irreducible, diagonal dominant linear system must 
be solved at  each time step. The resulting iterative scheme is not only 
unconditionally stable but has been shown (13) to produce an approxi- 
mating solution which converges uniformly to the true solution as Ax and 
At +O. 

Define: 

For computer computation, define: 

By using the trapezoid rule, which retains O(At)2  globally: 

I 1  (Eq. A9) Jib) = ~p-1) + -12 At - [q i (n)  + qp-*) 
2 

with J,(O) = 0 and i = 0,1,2, . . . , N. Hence: 

(Eq. A10) 

Putting all parts together gives the numerical scheme (tridiagonal sys- 
tem): 

+ K[l - qP+')]Ii(") (Eq. Al l )  

where i = 1,2,3,. . . , N - 1. The boundary conditions (no flux boundary) 
at x = -151, which corresponds to i = 0 in the "bookkeeping" of this nu- 
merical scheme, is approximated as: 

where the O(Axz) accuracy is preserved via this approximation. Since 
the boundary condition requires ( b q / d n ) l X = - ~ ,  = 0 for all t 3 0, then: 

(Eq. A13) 

This equation, together with the boundary condition at i = N ( x  = O), 
qfi") = 0, and n = 0, 1,2, . . . , and Eq. A l l  give, after some algebra, the 
tridiagonal system (interative): 

all@+') + a12&+') + O V ~ ' )  + . . . + Oq(fi?i) = pl(") + KAtZi(") 

a21qjnf1) + a22qPt1) + a2l&+') + O T ~ + ' )  + . . . + 0q9t;) 
= q ~ ( " )  + KAtIZ(") 

otlp+') . . . U~~T,?$$Y + aN-1,=,-1??@?!) = qf i i i  + KAtIg?, 
(Eq. A14) 

where: 

2 DAt a12 = --- 
3 Ax 
D At 
Ax a21 = - 
D At 
Ax aii = 1 + - + KAtIi("), i = 2,3,4, . . . , N - 7 

Hence, by iteration with the matrix system: 

the relative concentration distribution qtnil) = [qp"), ?I"+'), t)$+'). . . 
qfi+')]',  is obtained in terms of the previous time level relative concen- 
tration distribution and any new drug which has come into solution in 
the intervening time. 

It remains now to calculate p l ( t ) ,  the relative cumulative drug mass 
loss from the ointment system. Since p l ( t )  is defined as: 

the space derivative at  the right-hand boundary x = 0 is replaced by the 
numerical approximation which preserves the O(Ax2) accuracy locally 
and globally in time: 

Under the assumption that there is a perfect sink condition operating 
a t  all times at  the ointment-sink boundary, x = 0, ' IN(")  = 0,  and n = 1, 
2 ,  . . .. Hence, substituting for this space derivative approximation and 
again using the trapezoid rule for numerical quadrature in time yield: 

p ( n + ~ )  - D I ~ + u  (Eq. A18) 2ArL1 
where: 

At 
2 I$"+') = 1 2 ( " )  + - {4[q&?:) + q f i l l ]  - [q&!i' + q f i i , ] ]  (Eq. A19) 

with = 0. 
Equations A9, A10, A13, and A14 constitute the numerical simulation 

for the relative solution phase drug concentration at any point in time, 
while Eqs. A18 and A19 are used to obtain the relative cumulative drug 
mass release from the ointment slab at  time t L 0. 
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